
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Analysis of Rotation Methods in Computer Graphics

Yonatan Edward Njoto - 135230361,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523036@std.stei.itb.ac.id, 2yonatan.njoto@gmail.com

Abstract— This paper explores the fundamental techniques used

for 3D object rotation—Euler angles, quaternions, transformation

matrices, and Rodrigues' formula—offering a comprehensive

comparison of their strengths and limitations. The objective is to

provide a detailed analysis of each method’s execution speed,

memory consumption, and computational efficiency, highlighting

their impact on real-time applications, simulations, and graphics

rendering.

Keywords—Computer graphics, Rotations, Geometric

transformations, Rodrigues, Quaternion, Euler Angles.

I. INTRODUCTION

Rotations in three-dimensional space are a cornerstone of

computer graphics, robotics, aerospace engineering, and physics

simulations. The ability to manipulate objects in 3D

environments with precision and efficiency is crucial for

rendering realistic models and animations. Several mathematical

techniques exist to represent and compute 3D rotations, each

providing unique benefits and limitations. Among the most used

methods are Euler angles, rotation matrices, quaternions, and

Rodrigues' rotation formula.

Euler angles provide an intuitive way to describe rotations by

specifying angles around coordinate axes. However, they are

prone to gimbal lock, a condition that results in the loss of one

degree of freedom. Matrix transformations, on the other hand,

offer a straightforward and computationally efficient approach

but can suffer from numerical instability if not properly

normalized. Quaternions are widely regarded for their ability to

represent rotations compactly and avoid gimbal lock, making

them popular in modern graphics applications. Rodrigues'

rotation formula provides an elegant way to compute rotations

around arbitrary axes, offering efficiency and simplicity for

small-angle rotations.

This paper aims to compare these methods by analyzing their

mathematical properties, computational costs, and practical

applications. By providing a comprehensive overview, we hope

to highlight the strengths of each approach, assisting developers

and researchers in selecting the most suitable method for their

specific needs.

II. THEORETICAL BACKGROUND

A. Euler Angles

Euler Angles are a set of three angles used to describe the

orientation of a rigid body in a three-dimensional space. The

concept was introduced by the Swiss mathematician Leonhard

Euler in the 18th century. The angles define rotations around a

fixed coordinate system (typically denoted as x, y, z) in a specific

sequence. Euler angles are particularly useful in applications

like 3D graphics, robotics, and aerospace engineering, where

rotations need to be described in terms of a series of simple,

successive rotations [1].

Euler angles consist of three rotations, typically denoted as:

a. Pitch (θ): Rotation about the x-axis.

𝑅𝑥(𝜃) = [

1 0 0
0 cos (𝜃) −sin (𝜃)

0 sin (𝜃) cos (𝜃)
] (1)

b. Yaw (ψ): Rotation about the y-axis.

𝑅𝑦(𝜓) = [
𝑐𝑜𝑠 (𝜓) 0 𝑠𝑖𝑛 (𝜓)

0 1 0
−𝑠𝑖𝑛 (𝜓) 0 cos (𝜓)

] (2)

c. Roll (𝜙): Rotation about the 𝑧-axis.

𝑅𝑧(𝜙) = [
𝑐𝑜𝑠 (𝜙) −𝑠𝑖𝑛 (𝜙) 0

𝑠𝑖𝑛 (𝜙) 𝑐𝑜𝑠 (𝜙) 0
0 0 1

] (3)

The total rotation matrix 𝑅 is obtained by multiplying the

individual rotation matrices in a specific order, depending on the

rotation. For the ZYX convention (which is common), the final

rotation matrix is:

𝑅 = 𝑅𝑧(𝜙)𝑅𝑦(𝜓)𝑅𝑥(𝜃) (4)

While Euler angles are widely used and intuitive, they come

with several limitations:

a. Gimbal lock occurs when two of the three rotation axes

align, causing a loss of one degree of freedom.

b. Ambiguity, Different sequences of rotations (e.g., XYZ

vs. ZYX) can result in different final orientations.

B. Quaternions

Quaternions are a mathematical tool used to represent and

compute rotations in three-dimensional space. Introduced by

William Rowan Hamilton in 1843, quaternions extend complex

numbers to higher dimensions, providing a compact and

efficient way to describe 3D rotations without the limitations

associated with Euler angles [2].

A quaternion is defined as:

𝑞 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 (5)

mailto:113523036@std.stei.itb.ac.id
mailto:yonatan.njoto@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Where 𝑤, 𝑥, 𝑦, 𝑧 are real numbers, and 𝑖, 𝑗, 𝑘 are imaginary

units that follow the rules:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (6)

In the context of 3D graphics, quaternions are commonly

written as:

𝑞 = (𝑤, 𝑣⃗) = (𝑤, 𝑥, 𝑦, 𝑧) (7)

Where 𝑤 is the scalar part, and 𝑣⃗ = (𝑥, 𝑦, 𝑧) is the vector part.

To rotate a vector 𝑝 by a quaternion q, the vector is treated as a

pure quaternion p = (0, 𝑝). The rotation is applied by:

𝑝′ = 𝑞𝑝𝑞−1 (8)

Where 𝑞−1 is the inverse of q. Advantages of using

Quaternions compared to Euler Angles are no Gimbal Locks and

efficient interpolation because it allows spherical linear

interpolation (SLERP).

C. Rodrigues Rotation

Rodrigues' rotation formula provides a method to rotate a

vector in three-dimensional space around an arbitrary axis by a

given angle [3]. The formula is an efficient way to compute the

rotation without needing to construct a full rotation matrix.

The formula is expressed as:

𝑣𝑟𝑜𝑡 = 𝑣 cos(𝜃) + (𝑘 × 𝑣) sin(𝜃)
+ 𝑘(𝑘. 𝑣)(1 − cos(𝜃))

(9)

Where:

a. 𝑣 is the vector to be rotated

b. 𝑘 is the unit vector along the axis of rotation

c. 𝜃 is the angle of rotation

d. 𝑣rot is the rotated vector

III. IMPLEMENTATION

This implementation visualizes the rotation of a cube using

three different methods:

a. Euler Rotator

b. Transformation Matrix Rotator

c. Quaternion Rotator

d. Rodrigues Rotator

The cube is rotated by the same Euler angles (degrees in ZYX

order) across all methods. The goal is to compare the results

visually and its operation cost, highlight differences between the

three techniques.

The implementation is in Python, leveraging efficient array

processing for matrix operations, dot products, and

transformations, ensuring optimal performance during

visualization.

A. Cube

The Cube class generates vertices representing a cube

centered at the origin. The create cube method defines the eight

vertices based on the cube's size.

Figure 1. Cube Class

Source: https://github.com/yonatan-nyo/3d-rotations

B. Plotter

Plotter is responsible for drawing the cube in 3D space using

Matplotlib. Edges are plotted by connecting vertex pairs to form

the cube structure.

Figure 2. Plotter Class

Source: https://github.com/yonatan-nyo/3d-rotations

C. Operation Converter

To simplify the comparison of different rotation methods, we

will first convert Euler angles into quaternions. By converting

Euler angles to quaternions, we can directly compare the

performance of quaternions against other methods easily, while

maintaining consistency in how rotations are applied. The

process involves representing the Euler angles as a combination

of rotations around the three principal axes (x, y, and z), and then

converting this representation into a quaternion form, then

passing them into the respective functions to apply rotation into

the cube vertices. Below is a visual representation of the

conversion process:

Figure 3. Euler to Quaternion

Source: https://github.com/yonatan-nyo/3d-rotations

Additionally, to facilitate Rodrigues rotation, we will convert

Euler angles into the axis-angle representation. The axis-angle

representation encodes a rotation as a unit vector (representing

https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

the axis of rotation) and a scalar (representing the angle of

rotation). By converting Euler angles to this form, we can

perform rotations efficiently using geometric algebra principles.

The process for this conversion is illustrated in the diagram

below:

Figure 4. Euler to Axis Angle

Source: https://github.com/yonatan-nyo/3d-rotations

D. Euler Rotator

The Euler Rotator performs rotations using Euler angles,

applying them through both SciPy functions and manual

calculations. This method involves rotating objects around the

three principal axes (x, y, and z), with each axis defined by a

corresponding angle that specifies the object's orientation in 3D

space. While SciPy provides optimized functions for handling

these rotations efficiently, manual calculations allow for a

deeper understanding of the underlying mathematical principles

and the rotational mechanics involved.

In addition to full 3D rotations, the Euler Rotator also

supports single-axis rotations, which significantly simplifies the

process. For single-axis rotations, only one of the three principal

axes (x, y, or z) is involved, making the rotation computationally

simpler and faster. This is particularly useful for cases where the

rotation is confined to a single axis, as it avoids the complexity

of applying transformations along multiple axes simultaneously.

By implementing both SciPy-based and manual approaches,

the Euler Rotator provides flexibility in handling various

rotation scenarios, allowing for a direct comparison of the

performance and efficiency of both methods. This comparison

offers insights into the trade-offs between convenience (via

SciPy) and control (via manual calculations), while also

highlighting the practical benefits of Euler angles for different

types of rotations.

Figure 5. Euler Rotation

Source: https://github.com/yonatan-nyo/3d-rotations

E. Transformation Matrix Rotator

The Matrix Rotator implements a 3D rotation transformation

using a combination of rotation matrices, like the Euler rotation

method. This approach involves constructing individual rotation

matrices for each of the three principal axes (x, y, and z), and

then multiplying them together to form a single composite

matrix. This matrix is then used to rotate 3D coordinates. While

this method provides a straightforward way to handle rotations,

it can become computationally expensive when dealing with

multiple transformations, making it less efficient than alternative

methods like quaternions in some cases.

https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Figure 6. Matrix Rotator

Source: https://github.com/yonatan-nyo/3d-rotations

F. Quaternion Rotator

The Quaternions provide robust 3D rotation, effectively

overcoming issues like gimbal lock that can occur with

traditional Euler angles. By using quaternions, rotations can be

represented in a compact form, reducing computational

complexity and improving numerical stability. This

implementation takes advantage of the optimized SciPy library

in Python, which offers high-performance functions for

quaternion-based rotations, ensuring both precision and speed.

This makes quaternions an ideal choice for applications that

require smooth and efficient 3D transformations, such as

computer graphics, robotics, and physics simulations.

Figure 7. Quaternion Rotator

Source: https://github.com/yonatan-nyo/3d-rotations

G. Rodrigues Rotator

The Rodrigues rotation formula provides a method for

rotating vectors in 3D space using an axis-angle representation.

It simplifies the computation of rotation matrices by directly

applying a rotation around an arbitrary axis, rather than using

complex transformations for each of the three principal axes. By

specifying the axis of rotation and the angle, the Rodrigues

formula avoids the need for multiple matrix multiplications,

offering a streamlined solution for performing rotations in 3D

space.

Figure 8. Rodrigues Rotator

Source: https://github.com/yonatan-nyo/3d-rotations

IV. USAGE

To benchmark these five methods, we will conduct a thorough

analysis of their performance by measuring both execution

speed and memory usage. This will be done by utilizing Python's

time module to track the time taken for execution, and trace

malloc to monitor memory allocation throughout the process.

Followed by analysis on how these methods work.

A. Single Axis Rotation

Figure 9. Single Axis Rotation

Source: https://github.com/yonatan-nyo/3d-rotations

In the case of single-axis rotation, Euler angles (one degree)

offer the fastest method for performing the rotation because they

simplify the transformation process. By rotating an object

around a single axis, only one angle needs to be applied,

eliminating the complexity of full 3D transformations. Euler

angles directly specify the amount of rotation around the

relevant axis, reducing both time and computational overhead.

This makes them an efficient choice for rotations confined to a

single axis.

Also, when considering peak memory usage, Euler angles

(one degree) achieve the lowest peak memory consumption.

This is because they only require a minimal amount of data—

https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

just the single angle and axis to perform the rotation—without

the need to create additional data structures like rotation

matrices. In contrast, other methods such as quaternions, while

offering lower total memory usage, may require extra steps like

normalization or additional computations that lead to higher

peak memory usage.

Figure 10. Single Axis Rotation Result

Source: https://github.com/yonatan-nyo/3d-rotations

B. Two Axis Rotation

Figure 11. Two Axis Rotation

Source: https://github.com/yonatan-nyo/3d-rotations

In two-axis rotation, quaternions provide the best

performance in terms of both execution time and total memory

usage. This is due to their efficient representation of rotations,

where a quaternion requires only four parameters to encode a

rotation in 3D space, compared to the multiple values required

for a rotation matrix. Additionally, quaternions avoid the need

for intermediate computations, such as calculating sine and

cosine values for multiple axes, which can lead to faster

execution.

However, when it comes to peak memory usage, the

transformation matrix performs better. A transformation matrix

is typically a 3x3 matrix, and since it only requires the values for

the rotation itself, there are no additional operations needed to

normalize the rotation or transform values into axis components.

In contrast, quaternions require normalization to ensure they

represent valid rotations, which adds some extra memory

overhead. Furthermore, quaternions involve handling additional

data structures to store the rotational axis and angle, leading to

slightly higher peak memory usage.

Figure 12. Two Axis Rotation Result

Source: https://github.com/yonatan-nyo/3d-rotations

C. Three Axis Rotation

Figure 13. Three Axis Rotation

Source: https://github.com/yonatan-nyo/3d-rotations

In three-axis rotation, quaternions continue to deliver the best

overall performance, in both execution time and total memory

usage. This is largely due to the compact nature of quaternion

representations, which encode 3D rotations using only four

values (one scalar and three vector components). This efficiency

minimizes the number of trigonometric calculations and matrix

multiplications typically required by other rotation methods,

resulting in faster computations and lower memory consumption

over the duration of the operation.

However, when considering peak memory usage, the

transformation matrix consistently outperforms quaternions. A

3x3 rotation matrix directly represents the rotation, requiring no

additional steps such as normalization or axis-angle conversion.

This direct representation eliminates the need to maintain extra

data structures or perform iterative calculations during the

rotation process, contributing to a lower memory footprint at

peak usage. In contrast, quaternions require periodic

normalization to prevent drift and ensure accurate rotation over

time, which can momentarily increase memory usage.

Furthermore, in three-axis rotations, quaternions must often

be converted from Euler angles or axis-angle representations,

involving intermediate steps that add to memory demands. The

transformation matrix, by contrast, applies rotations directly

through matrix multiplication, bypassing the need for additional

transformations and maintaining a lower peak memory

requirement.

https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations
https://github.com/yonatan-nyo/3d-rotations

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Figure 14. Three Axis Rotation Result

Source: https://github.com/yonatan-nyo/3d-rotations

V. CONCLUSION

The choice of rotation method depends on the application's

needs. For single-axis rotations, Euler angles are the fastest and

simplest option. For multi-axis rotations, quaternions provide

the best performance and stability, avoiding issues like gimbal

lock. Transformation matrices are useful when minimizing peak

memory usage is a priority.

VI. APPENDIX

a. YouTube video explaining the concept:

https://youtube.com/shorts/i2tTxdlhXh4

b. GitHub repository for the project:

https://github.com/yonatan-nyo/3d-rotations

VII. ACKNOWLEDGMENT

The author would like to express sincere gratitude to God

Almighty for the guidance and ease in writing this paper. Special

thanks are also extended to Dr. Ir. Rinaldi Munir, M.T., for his

role as the lecturer in the IF2123 Linear and Geometry Algebra

course and for publishing the lecture materials on the website,

which were instrumental in the research process. The author is

deeply appreciative of the unwavering support from family and

friends throughout the completion of this paper.

REFERENCES

[1] Goldstein, H., Poole, C., & Safko, J. 2002. “Classical Mechanics (3rd ed.).

Addison-Wesley”.
[2] Munir, Rinaldi. 2023. “Aljabar Quaternion (Bagian 2)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-

2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf (Diakses pada 22
Desember 2024)

[3] Freitas, P. (2018). “Rodrigues' rotation formula: A historical and

mathematical survey. International Congress of Mathematicians”.
https://eta.impa.br/icm_files/short/section_19/SC.19.5.pdf (Diakses pada

30 Desember 2024)

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s paper,

and not plagiarized.

Bandung, 31 December 2024

Yonatan Edward Njoto

13523036

https://github.com/yonatan-nyo/3d-rotations
https://youtube.com/shorts/i2tTxdlhXh4
https://github.com/yonatan-nyo/3d-rotations
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2023-2024/Algeo-26-Aljabar-Quaternion-Bagian2-2023.pdf
https://eta.impa.br/icm_files/short/section_19/SC.19.5.pdf

