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Abstract— This paper explores the fundamental techniques used 

for 3D object rotation—Euler angles, quaternions, transformation 

matrices, and Rodrigues' formula—offering a comprehensive 

comparison of their strengths and limitations. The objective is to 

provide a detailed analysis of each method’s execution speed, 

memory consumption, and computational efficiency, highlighting 

their impact on real-time applications, simulations, and graphics 

rendering. 
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I.   INTRODUCTION 

Rotations in three-dimensional space are a cornerstone of 

computer graphics, robotics, aerospace engineering, and physics 

simulations. The ability to manipulate objects in 3D 

environments with precision and efficiency is crucial for 

rendering realistic models and animations. Several mathematical 

techniques exist to represent and compute 3D rotations, each 

providing unique benefits and limitations. Among the most used 

methods are Euler angles, rotation matrices, quaternions, and 

Rodrigues' rotation formula. 

Euler angles provide an intuitive way to describe rotations by 

specifying angles around coordinate axes. However, they are 

prone to gimbal lock, a condition that results in the loss of one 

degree of freedom. Matrix transformations, on the other hand, 

offer a straightforward and computationally efficient approach 

but can suffer from numerical instability if not properly 

normalized. Quaternions are widely regarded for their ability to 

represent rotations compactly and avoid gimbal lock, making 

them popular in modern graphics applications. Rodrigues' 

rotation formula provides an elegant way to compute rotations 

around arbitrary axes, offering efficiency and simplicity for 

small-angle rotations. 

This paper aims to compare these methods by analyzing their 

mathematical properties, computational costs, and practical 

applications. By providing a comprehensive overview, we hope 

to highlight the strengths of each approach, assisting developers 

and researchers in selecting the most suitable method for their 

specific needs. 

 

II.  THEORETICAL BACKGROUND 

A. Euler Angles 

Euler Angles are a set of three angles used to describe the 

orientation of a rigid body in a three-dimensional space. The 

concept was introduced by the Swiss mathematician Leonhard 

Euler in the 18th century. The angles define rotations around a 

fixed coordinate system (typically denoted as x, y, z) in a specific 

sequence. Euler angles are particularly useful in applications 

like 3D graphics, robotics, and aerospace engineering, where 

rotations need to be described in terms of a series of simple, 

successive rotations [1].  

Euler angles consist of three rotations, typically denoted as: 

a. Pitch (θ): Rotation about the x-axis. 

 

𝑅𝑥(𝜃) =  [

1 0 0
0 cos (𝜃) −sin (𝜃)

0 sin (𝜃) cos (𝜃)
] (1) 

 

b. Yaw (ψ): Rotation about the y-axis. 

 

𝑅𝑦(𝜓) =  [
𝑐𝑜𝑠 (𝜓) 0 𝑠𝑖𝑛 (𝜓)

0 1 0
−𝑠𝑖𝑛 (𝜓) 0 cos (𝜓)

] (2) 

 

c. Roll (𝜙): Rotation about the 𝑧-axis. 

 

𝑅𝑧(𝜙) =  [
𝑐𝑜𝑠 (𝜙) −𝑠𝑖𝑛 (𝜙) 0

𝑠𝑖𝑛 (𝜙) 𝑐𝑜𝑠 (𝜙) 0
0 0 1

] (3) 

 

The total rotation matrix 𝑅 is obtained by multiplying the 

individual rotation matrices in a specific order, depending on the 

rotation. For the ZYX convention (which is common), the final 

rotation matrix is: 

 

𝑅 =  𝑅𝑧(𝜙)𝑅𝑦(𝜓)𝑅𝑥(𝜃) (4) 

 

While Euler angles are widely used and intuitive, they come 

with several limitations: 

a. Gimbal lock occurs when two of the three rotation axes 

align, causing a loss of one degree of freedom. 

b. Ambiguity, Different sequences of rotations (e.g., XYZ 

vs. ZYX) can result in different final orientations. 

 

B. Quaternions 

Quaternions are a mathematical tool used to represent and 

compute rotations in three-dimensional space. Introduced by 

William Rowan Hamilton in 1843, quaternions extend complex 

numbers to higher dimensions, providing a compact and 

efficient way to describe 3D rotations without the limitations 

associated with Euler angles [2]. 

A quaternion is defined as: 

 

𝑞 = 𝑤 +  𝑥𝑖 +  𝑦𝑗 +  𝑧𝑘 (5) 
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Where 𝑤, 𝑥, 𝑦, 𝑧 are real numbers, and 𝑖, 𝑗, 𝑘 are imaginary 

units that follow the rules: 

 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 =  −1 (6) 

 

In the context of 3D graphics, quaternions are commonly 

written as: 

 

𝑞 = (𝑤, 𝑣⃗) = (𝑤, 𝑥, 𝑦, 𝑧) (7) 

 

Where 𝑤 is the scalar part, and 𝑣⃗ = (𝑥, 𝑦, 𝑧) is the vector part. 

To rotate a vector 𝑝 by a quaternion q, the vector is treated as a 

pure quaternion p = (0, 𝑝). The rotation is applied by: 

 

𝑝′ = 𝑞𝑝𝑞−1 (8) 

 

Where 𝑞−1 is the inverse of q. Advantages of using 

Quaternions compared to Euler Angles are no Gimbal Locks and 

efficient interpolation because it allows spherical linear 

interpolation (SLERP).  

 

 

C. Rodrigues Rotation 

Rodrigues' rotation formula provides a method to rotate a 

vector in three-dimensional space around an arbitrary axis by a 

given angle [3]. The formula is an efficient way to compute the 

rotation without needing to construct a full rotation matrix. 

The formula is expressed as: 

 

𝑣𝑟𝑜𝑡 = 𝑣 cos(𝜃) + (𝑘 × 𝑣) sin(𝜃)
+ 𝑘(𝑘. 𝑣)(1 − cos(𝜃)) 

(9) 

 

Where: 

a. 𝑣 is the vector to be rotated  

b. 𝑘 is the unit vector along the axis of rotation 

c. 𝜃 is the angle of rotation 

d. 𝑣rot is the rotated vector 

 

III.   IMPLEMENTATION 

This implementation visualizes the rotation of a cube using 

three different methods: 

a. Euler Rotator 

b. Transformation Matrix Rotator 

c. Quaternion Rotator 

d. Rodrigues Rotator 

The cube is rotated by the same Euler angles (degrees in ZYX 

order) across all methods. The goal is to compare the results 

visually and its operation cost, highlight differences between the 

three techniques. 

The implementation is in Python, leveraging efficient array 

processing for matrix operations, dot products, and 

transformations, ensuring optimal performance during 

visualization. 

 

A. Cube 

The Cube class generates vertices representing a cube 

centered at the origin. The create cube method defines the eight 

vertices based on the cube's size. 

 

 
Figure 1. Cube Class 

Source: https://github.com/yonatan-nyo/3d-rotations  

 

B. Plotter 

Plotter is responsible for drawing the cube in 3D space using 

Matplotlib. Edges are plotted by connecting vertex pairs to form 

the cube structure. 

 

 
Figure 2. Plotter Class 

Source: https://github.com/yonatan-nyo/3d-rotations  

 

 

C. Operation Converter 

To simplify the comparison of different rotation methods, we 

will first convert Euler angles into quaternions. By converting 

Euler angles to quaternions, we can directly compare the 

performance of quaternions against other methods easily, while 

maintaining consistency in how rotations are applied. The 

process involves representing the Euler angles as a combination 

of rotations around the three principal axes (x, y, and z), and then 

converting this representation into a quaternion form, then 

passing them into the respective functions to apply rotation into 

the cube vertices. Below is a visual representation of the 

conversion process: 

 

 
Figure 3. Euler to Quaternion 

Source: https://github.com/yonatan-nyo/3d-rotations  

 

Additionally, to facilitate Rodrigues rotation, we will convert 

Euler angles into the axis-angle representation. The axis-angle 

representation encodes a rotation as a unit vector (representing 
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the axis of rotation) and a scalar (representing the angle of 

rotation). By converting Euler angles to this form, we can 

perform rotations efficiently using geometric algebra principles. 

The process for this conversion is illustrated in the diagram 

below: 

 

 
Figure 4. Euler to Axis Angle 

Source: https://github.com/yonatan-nyo/3d-rotations  

 

 

D. Euler Rotator 

The Euler Rotator performs rotations using Euler angles, 

applying them through both SciPy functions and manual 

calculations. This method involves rotating objects around the 

three principal axes (x, y, and z), with each axis defined by a 

corresponding angle that specifies the object's orientation in 3D 

space. While SciPy provides optimized functions for handling 

these rotations efficiently, manual calculations allow for a 

deeper understanding of the underlying mathematical principles 

and the rotational mechanics involved.   

In addition to full 3D rotations, the Euler Rotator also 

supports single-axis rotations, which significantly simplifies the 

process. For single-axis rotations, only one of the three principal 

axes (x, y, or z) is involved, making the rotation computationally 

simpler and faster. This is particularly useful for cases where the 

rotation is confined to a single axis, as it avoids the complexity 

of applying transformations along multiple axes simultaneously.   

By implementing both SciPy-based and manual approaches, 

the Euler Rotator provides flexibility in handling various 

rotation scenarios, allowing for a direct comparison of the 

performance and efficiency of both methods. This comparison 

offers insights into the trade-offs between convenience (via 

SciPy) and control (via manual calculations), while also 

highlighting the practical benefits of Euler angles for different 

types of rotations. 

 
Figure 5. Euler Rotation 

Source: https://github.com/yonatan-nyo/3d-rotations  

 

 

E. Transformation Matrix Rotator 

The Matrix Rotator implements a 3D rotation transformation 

using a combination of rotation matrices, like the Euler rotation 

method. This approach involves constructing individual rotation 

matrices for each of the three principal axes (x, y, and z), and 

then multiplying them together to form a single composite 

matrix. This matrix is then used to rotate 3D coordinates. While 

this method provides a straightforward way to handle rotations, 

it can become computationally expensive when dealing with 

multiple transformations, making it less efficient than alternative 

methods like quaternions in some cases. 
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Figure 6. Matrix Rotator 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

F. Quaternion Rotator 

The Quaternions provide robust 3D rotation, effectively 

overcoming issues like gimbal lock that can occur with 

traditional Euler angles. By using quaternions, rotations can be 

represented in a compact form, reducing computational 

complexity and improving numerical stability. This 

implementation takes advantage of the optimized SciPy library 

in Python, which offers high-performance functions for 

quaternion-based rotations, ensuring both precision and speed. 

This makes quaternions an ideal choice for applications that 

require smooth and efficient 3D transformations, such as 

computer graphics, robotics, and physics simulations. 

 

 
Figure 7. Quaternion Rotator 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

 

G. Rodrigues Rotator 

The Rodrigues rotation formula provides a method for 

rotating vectors in 3D space using an axis-angle representation. 

It simplifies the computation of rotation matrices by directly 

applying a rotation around an arbitrary axis, rather than using 

complex transformations for each of the three principal axes. By 

specifying the axis of rotation and the angle, the Rodrigues 

formula avoids the need for multiple matrix multiplications, 

offering a streamlined solution for performing rotations in 3D 

space. 

 

 
Figure 8. Rodrigues Rotator 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

IV.   USAGE 

To benchmark these five methods, we will conduct a thorough 

analysis of their performance by measuring both execution 

speed and memory usage. This will be done by utilizing Python's 

time module to track the time taken for execution, and trace 

malloc to monitor memory allocation throughout the process. 

Followed by analysis on how these methods work. 

 

A. Single Axis Rotation 

 

 
Figure 9. Single Axis Rotation 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

In the case of single-axis rotation, Euler angles (one degree) 

offer the fastest method for performing the rotation because they 

simplify the transformation process. By rotating an object 

around a single axis, only one angle needs to be applied, 

eliminating the complexity of full 3D transformations. Euler 

angles directly specify the amount of rotation around the 

relevant axis, reducing both time and computational overhead. 

This makes them an efficient choice for rotations confined to a 

single axis. 

Also, when considering peak memory usage, Euler angles 

(one degree) achieve the lowest peak memory consumption. 

This is because they only require a minimal amount of data—
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just the single angle and axis to perform the rotation—without 

the need to create additional data structures like rotation 

matrices. In contrast, other methods such as quaternions, while 

offering lower total memory usage, may require extra steps like 

normalization or additional computations that lead to higher 

peak memory usage. 

 

 
Figure 10. Single Axis Rotation Result 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

B. Two Axis Rotation 

 

 
Figure 11. Two Axis Rotation 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

In two-axis rotation, quaternions provide the best 

performance in terms of both execution time and total memory 

usage. This is due to their efficient representation of rotations, 

where a quaternion requires only four parameters to encode a 

rotation in 3D space, compared to the multiple values required 

for a rotation matrix. Additionally, quaternions avoid the need 

for intermediate computations, such as calculating sine and 

cosine values for multiple axes, which can lead to faster 

execution. 

However, when it comes to peak memory usage, the 

transformation matrix performs better. A transformation matrix 

is typically a 3x3 matrix, and since it only requires the values for 

the rotation itself, there are no additional operations needed to 

normalize the rotation or transform values into axis components. 

In contrast, quaternions require normalization to ensure they 

represent valid rotations, which adds some extra memory 

overhead. Furthermore, quaternions involve handling additional 

data structures to store the rotational axis and angle, leading to 

slightly higher peak memory usage. 

 

 
Figure 12. Two Axis Rotation Result 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

 

C. Three Axis Rotation 

 

 
Figure 13. Three Axis Rotation 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

In three-axis rotation, quaternions continue to deliver the best 

overall performance, in both execution time and total memory 

usage. This is largely due to the compact nature of quaternion 

representations, which encode 3D rotations using only four 

values (one scalar and three vector components). This efficiency 

minimizes the number of trigonometric calculations and matrix 

multiplications typically required by other rotation methods, 

resulting in faster computations and lower memory consumption 

over the duration of the operation. 

However, when considering peak memory usage, the 

transformation matrix consistently outperforms quaternions. A 

3x3 rotation matrix directly represents the rotation, requiring no 

additional steps such as normalization or axis-angle conversion. 

This direct representation eliminates the need to maintain extra 

data structures or perform iterative calculations during the 

rotation process, contributing to a lower memory footprint at 

peak usage. In contrast, quaternions require periodic 

normalization to prevent drift and ensure accurate rotation over 

time, which can momentarily increase memory usage. 

Furthermore, in three-axis rotations, quaternions must often 

be converted from Euler angles or axis-angle representations, 

involving intermediate steps that add to memory demands. The 

transformation matrix, by contrast, applies rotations directly 

through matrix multiplication, bypassing the need for additional 

transformations and maintaining a lower peak memory 

requirement. 
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Figure 14. Three Axis Rotation Result 

Source: https://github.com/yonatan-nyo/3d-rotations 

 

 

V.   CONCLUSION 

The choice of rotation method depends on the application's 

needs. For single-axis rotations, Euler angles are the fastest and 

simplest option. For multi-axis rotations, quaternions provide 

the best performance and stability, avoiding issues like gimbal 

lock. Transformation matrices are useful when minimizing peak 

memory usage is a priority. 

 

VI.   APPENDIX 

a. YouTube video explaining the concept:  

https://youtube.com/shorts/i2tTxdlhXh4  

b. GitHub repository for the project: 

https://github.com/yonatan-nyo/3d-rotations  
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